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Abstract
The bi-Hamiltonian structure of the Benney hierarchy is revisited. We show
that the compatibility condition of the Poisson brackets provides the genus-zero
free energy of a topological field theory coupled to two-dimensional gravity.
We calculate the correlation functions via the Landau–Ginzburg formulation
and derive the string equation based on the twistor construction. Moreover,
by using the approach of Dubrovin and Zhang, we compute the genus-one
correction of the Poisson brackets and compare them with the Oevel–Strampp
brackets of the Kaup–Broer hierarchy.

PACS numbers: 0230, 0240, 1225

1. Introduction

Over the past decade, the developments of integrable systems have had many important
influences on theoretical physics and pure mathematics. Among others, those works
concerning the relationship to topological field theories (TFT) and string theories have had
much attention paid to them in frontier subjects (see [1] for a review). In particular, Witten [2]
and Kontsevich [3] show that the partition function of two-dimensional (2D) topological gravity
is equivalent to a particular tau-function of the Korteweg–de Vries hierarchy characterized by
the string equation. Now it is generally believed that 2D TFT coupled to 2D gravity can be
formulated as an integrable hierarchy of nonlinear partial differential equations.

In general, 2D TFT can be classified by the solutions of the Witten–Dijkgraaf–E Verlinde–
H Verlinde (WDVV) equations of associativity [2, 4] in the sense that a particular solution
of WDVV equations provides the primary free energy of some topological model. In
fact, various classes of solutions to the WDVV equations have been obtained (see [5–7]
and references therein), which turn out to be the tau-functions of dispersionless integrable
hierarchies. Accordingly, investigating the solution space of the WDVV equations will deepen
our understanding of 2D TFT.

3 Author to whom correspondence should be addressed.
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It is well known that Poisson structures of dispersionless integrable hierarchies have the
form of hydrodynamic type [8]. Due to this fact, the integrability (bi-Hamiltonian structure)
of the WDVV equations can be formulated in a geometric way called Frobenius manifolds [7].
Based on this geometrical construction, the higher-genus extension of the Poisson structures
[9] and Virasoro constraints [10] of the associated integrable hierarchies are given.

The purpose of this paper is to study a dispersionless non-standard Lax hierarchy, which
is a modification of the dispersionless Kadomtsev–Petviashvili (dKP) hierarchy [11, 12], from
the TFT point of view. The Lax operator we would consider has the form

L = pN + v1pN−1 + v2pN−2 + · · · + vN +
vN+1

p
(1.1)

which satisfies the hierarchy flows (T1 = X)

∂L

∂Tn
= {

L
n/N

�1 , L
}

(1.2)

where Ln
�1 denotes the polynomial pn + · · · + (· · ·)p, i.e. we cut off the terms after p of the

expansion (in p) of Ln and the Poisson bracket { , } is defined by [13]

{f (p,X), g(p,X)} = ∂f

∂p

∂g

∂X
− ∂f

∂X

∂g

∂p
.

We note that the Lax operator (1.1) can be obtained from that of the dispersionless modified
KP (dmKP) hierarchy [14, 15] via truncations. Thus the non-standard Lax hierarchy (1.2) is
referred to as the constrained dmKP hierarchy [16].

In this paper, for simplicity, we shall concentrate on the Lax operator of the form

L = p + v1 + v2p−1 (1.3)

which satisfies the non-standard Lax equations

∂L

∂Tn
= {

Ln
�1, L

}
. (1.4)

The first few flows are

∂

∂T2

(
v1

v2

)
=
(
(v1)2 + 2v2

2v1v2

)
X

∂

∂T3

(
v1

v2

)
=
(

6v1v2 + 6(v1)3

3(v1)2v2 + 3(v2)2

)
X

(1.5)

where the simplest equation (T2-flow) is the Benney equation which describes long waves in
nonlinear phenomena (here we only consider the (1 + 1)-dimensional reduction of the Benney
system in [17]). The whole equations (1.4) form what we call the Benney hierarchy which
has been intensively studied over the past two decades (see, for example, [13, 18–22] and
references therein).

Remark 1. The algebraic and Hamiltonian structure associated with the kind of Lax operators
(1.1) have also been investigated in [21] where the Lax equations are defined by the
bracket {A,B} = p∂A/∂p∂B/∂x − p∂A/∂x∂B/∂p with respect to the decomposition
� = ��0⊕�<0 for the pseudo-differential operator� and the relationship to the dispersionless
Toda hierarchies (dToda) [12, 23] is established as well.
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Recently, the bi-Hamiltonian structures associated with the Benney hierarchy (1.4) have
been investigated based on the theory of classical r-matrices [14]. From that one can associate
with a free energy coming from a 2D TFT. In particular, by this free energy, we construct an
additional hierarchy generated by Hamiltonians of logarithmic type which together with the
ordinary hierarchy are identified as flows in genus-zero TFT coupled to 2D topological gravity.
The basic idea is that the dispersionless Lax operator (1.3) can be viewed as a superpotential in
the Landau–Ginzburg (LG) formulation of TFT [4, 5, 24]. Thus, according to the LG theory,
the variables v1 and v2 are identified as the fundamental correlation functions and their dynamic
flows turn out to be the genus-zero topological recursion relations [2, 25] of the associated TFT.

Moreover, in order to establish the string equation describing the gravitational effect, we
construct the twistor data for the Benney hierarchy by using the Orlov operator corresponding
to the dmKP hierarchy [15]. We show that a remarkable feature shared by the Benney hierarchy
is the flows which are generated by the additional logarithmic Hamiltonians can be expressed
by the logarithm of the Lax operator and are well defined only after a suitable constraint is
included in the twistor data.

Finally, from the genus-zero free energy of the Benney hierarchy, we compute the
associated G-function to construct the genus-one free energy and then quantize the Poisson
brackets of the Benney hierarchy using the Dubrovin–Zhang (DZ) approach to bi-Hamiltonian
structure in 2D TFT [9]. On the other hand, we also ‘quantize’ these Poisson structures from
the Oevel–Strampp (OS) brackets of the Kaup–Broer (KB) hierarchy [26, 27]. We find that
after appropriate differential substitutions, they are matched up to genus-one correction.

The paper is organized as follows. In the next section we compute the primary free
energy from the bi-Hamiltonian structure of the Benney hierarchy and then introduce the
additional logarithmic flows commuting with the ordinary Benney flows. In section 3 we
compute topological correlation functions using the LG formulation and show that the Benney
hierarchy can be derived from genus-zero topological recursion relations. Section 4 is devoted
to finding the twistor data to establish the string equation including the additional logarithmic
flows. In section 5 we show that the genus-one correction of the Poisson brackets obtained by
DZ quantization coincides with the OS brackets after appropriate differentiable substitutions
of the dynamical variables. In the final section we discuss some problems to be investigated.

2. Bi-Hamiltonian structure and free energy

In this section, we shall investigate the relations between the bi-Hamiltonian structure and its
associated free energy of the Benney hierarchy.

The bi-Hamiltonian structure of the Benney hierarchy (1.4) is given by [14, 16]

∂v

∂Tn
= J1

δHn+1

δv
= J2

δHn

δv

J1 =
(

0 ∂

∂ 0

)
J2 =

(
2∂ ∂v1

v1∂ v2∂ + ∂v2

) (2.1)

with Hamiltonians defined by

Hn = 1

n

∫
resLn

where ∂ ≡ ∂/∂X and resLn is the coefficient of p−1 of Ln. We list some of them as follows:

H1 =
∫

v2
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H2 =
∫

v1v2

H3 =
∫ [

(v1)2v2 + (v2)2
]

H4 =
∫ [

(v1)3v2 + 3v1(v2)2
]
.

Remark 2. The second bracket J2 in fact reveals the classical limit of Virasoro–U(1)–Kac–
Moody algebra [16] with v2 being the Diff S1 tensor of weight 2 and v1 a tensor of weight 1.
This is due to the fact that the Diff S1 flows are just the Hamiltonian flows generated by the
Hamiltonian H1 = ∫

v2.

Besides the concept of integrability, the geometrical mean of the Poisson brackets (2.1) is
profound. The essential idea is based on the fact that the bi-Hamiltonian structure J1 and J2

can be written as

J1 =
(

0 1
1 0

)
∂ ≡ ηαβ∂

J2 =
(

2 v1

v1 2v2

)
∂ +

(
0 1
0 0

)
v1
X +

(
0 0
0 1

)
v2
X ≡ gαβ(v)∂ + �αβ

γ (v)v
γ

X

where�αβ
γ (v) is the contravariant Levi-Civita connection of the contravariant flat metricgαβ(v).

BothJ1 andJ2 are Poisson brackets of hydrodynamic type introduced by Dubrovin and Novikov
[8]. The existence of a bi-Hamiltonian structure means that J1 and J2 have to be compatible, i.e.
J = J1 +λJ2 must be a Hamiltonian structure as well for all values of λ. The geometric setting
of this bi-Hamiltonian structure of hydrodynamic system is provided by Frobenius manifolds
[7, 28]. One way to define such manifolds is to construct a function F(t1, t2, . . . , tm) such
that the associated functions,

cαβγ = ∂3F(t)

∂tα∂tβ∂tγ
(2.2)

satisfy the following conditions [7].

• The matrix ηαβ = c1αβ is constant and non-degenerate (for the discussion of degenerate
cases, see [29]).

• The functions cαβγ = ηαεcεβγ define an associative commutative algebra with a unity
element. The associativity will give a system of nonlinear partial differential equation
(PDE) for F(t)

∂3F(t)

∂tα∂tβ∂tλ
ηλµ

∂3F(t)

∂tµ∂tγ ∂tσ
= ∂3F(t)

∂tα∂tγ ∂tλ
ηλµ

∂3F(t)

∂tµ∂tβ∂tσ
. (2.3)

• The functions F satisfies a quasi-homogeneity condition, which may be expressed as

LEF = dFF + (quadratic terms)

where E is known as the Euler vector field.

Equations (2.3) constitute the WDVV equations [2, 4] arising from TFT (see section 3). A
solution of the WDVV equations will be called the primary free energy. Given any solution of
the WDVV equation, one can construct a Frobenius manifold M associated with it. On such
a manifold one may interpret ηαβ as a flat metric and tα the flat coordinates. The associativity
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can be used to define a Frobenius algebra on each tangent space T tM. This multiplication
will be denoted by u · v. Then one may introduce a second flat metric on M defined by

gαβ = E(dtα · dtβ) (2.4)

where dtα · dtβ = cαβγ dtγ = ηασ cβσγ dtγ . This metric, together with the original metric ηαβ ,
defines a flat pencil (i.e. ηαβ + λgαβ is flat for any value of λ). Thus, one automatically obtains
a bi-Hamiltonian structure from a Frobenius manifold M. The corresponding Hamiltonian
densities are defined recursively by the formula [7]

∂2h(n)α

∂tβ∂tγ
= cσβγ

∂h(n−1)
α

∂tσ
(2.5)

where n � 1, α = 1, 2, . . . , m, and h(0)α = ηαβt
β . The integrability conditions for this system

are automatically satisfied when the c
γ

αβ are defined as above.
To find the free energy associated with the Benney hierarchy (1.4), one might set

t1 = v1 = h
(0)
2 , t2 = v2 = h

(0)
1 and thus

ηαβ(t) =
(

0 1
1 0

)
gαβ(t) =

(
2 t1

t1 2t2

)
. (2.6)

We note that the flat metrics ηαβ(t) and gαβ(t) satisfy ηαβ(t) = ∂gαβ(t)/∂t1 and
∫
t1 and

∫
t2

turn out to be the Casimirs for the bi-Hamiltonian structure of the hierarchy. In fact, those cγαβ
can be determined by (2.5) and (2.6). For α = 1 we have∫

h
(n)
1 = Hn

(n − 1)!
= 1

n!

∫
resLn (h

(0)
1 = t2)

which, up to a normalization, are the Hamiltonian densities of the Benney hierarchy and

c1
11 = 1 c1

12 = c1
21 = 0 c1

22 = 1

t2

c2
11 = c2

22 = 0 c2
21 = c2

12 = 1.
(2.7)

Then, from (2.7) and (2.2), we immediately obtain the free energy

F(t1, t2) = 1
2 (t

1)2t2 + 1
2 (t

2)2
(
log t2 − 3

2

)
. (2.8)

Also, from (2.4), (2.6) and (2.7), we can obtain the associated Euler vector field

E = t1 ∂

∂t1
+ 2t2 ∂

∂t2

which implies the quasi-homogeneity condition:

LEF(t) = 4F(t) + (t2)2.

Next, we turn to the hierarchy corresponding to α = 2 with h
(0)
2 = t1 = v1. Using (2.5)

and (2.7), we obtain

h
(1)
2 = (t1)2

2
+ t2(log t2 − 1)

h
(2)
2 = (t1)3

6
+ t1t2(log t2 − 1)

h
(3)
2 = (t1)4

24
+ 1

2 (t
1)2t2(log t2 − 1) + 1

2 (t
2)2
(
log t2 − 5

2

)
h
(4)
2 = (t1)5

120
+ 1

6 (t
1)3t2(log t2 − 1) + 1

2 t
1(t2)2

(
log t2 − 5

2

)
.



256 J-H Chang and M-H Tu

Motivated by the work of [30, 31], the Hamiltonian densities h(n)2 can be expressed as

h
(n)
2 = 2

n!
res[Ln(logL − cn)]

with the prescription

logL = log(p + t1 + t2p−1)

= 1
2 log t2 + 1

2 log(1 + t1p−1 + t2p−2) + 1
2 log

(
1 +

t1

t2
p +

1

t2
p2

)
(2.9)

and cn = ∑n
j=1

1
j
, c0 = 0. Then the Lax flows corresponding to h

(n)
2 are

∂L

∂T̄n
= 2{B̄n, L} B̄n = [Ln(logL − cn)]�1 (2.10)

or, in terms of bi-Hamiltonian structure

∂v

∂T̄n
= J1

δH̄n+1

δv
= J2

δH̄n

δv

where the Hamiltonians H̄n are defined by

H̄n = 2

n

∫
res[Ln(logL − cn)] = (n − 1)!

∫
h
(n)
2 .

These Hamiltonians generate additional flows which are compatible with the ordinary Benney
flows. We will see later that it is these logarithmic flows (2.10) which together with the ordinary
flow (1.4) imply that the Benney hierarchy can be formulated as a 2D TFT coupled to gravity.

3. Topological string at genus zero

In this section we would like to set up the correspondence between the Benney hierarchy and
its associated TFT at genus zero. Let us first recall some basic notions in TFT.

A topological matter theory can be characterized by a set of BRST invariant observables
{O1,O2, . . .} with couplings {T α} where O1 denotes the identity operator. If the number of
observables is finite the theory is called a topological minimal model and the observables are
referred to the primary fields. When the theory couples to gravity, a set of new observables
emerge as gravitational descendants {σn(Oα), n = 1, 2, . . .} with new coupling constants
{T α,n}. The identity operator O1 now becomes the puncture operator P . For convenience
we can identify the primary fields Oα and the coupling constants T α to σ0(Oα) and T α,0,
respectively. As usual, we shall call the space spanned by {T α,n, n = 0, 1, 2, . . .} the full
phase space and the subspace parametrized by {T α} the small phase space. These coupling
times describe the perturbative flows with respect to the corresponding critical theory (in which
T α,n = 0).

For a topological model the most important quantities are correlation functions which
describe the topological properties of the manifold where the model lives. The generating
function of correlation functions is the full free energy defined by

F(T ) =
∞∑
g=0

Fg(T ) =
∞∑
g=0

〈
exp

[∑
α,n

T α,nσn(Oα)

]〉
g

where 〈· · ·〉g denotes the expectation value on a Riemann surface of genus g with respect to
a classical action. In the subsequent sections, we will omit the exponential factor without
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causing any confusion. Therefore, a generic m-point correlation function can be calculated as
follows:

〈σn1(Oα1)σn2(Oα2) · · · σnm(Oαm)〉g = ∂mFg

∂T α1,n1∂T α2,n2 · · · ∂T αm,nm
.

In the following, we shall restrict ourselves to the trivial topology, i.e. the genus-zero sector
(g = 0) since this part is more relevant to dispersionless integrable hierarchies. In particular,
the genus-zero free energy restricting on the small phase space is the primary free energy
defined by

F0|T α=tα,T α,n�1=0 = F(t).

Let us define some genus-zero correlation functions on the small phase space. The metric
on the space of primary fields is defined by

〈POαOβ〉 = ηαβ.

When ηαβ is independent of the couplings we call it the flat metric and the couplings T α the
flat coordinates. In fact, a three-point function in the small phase space can be expressed as

〈OαOβOγ 〉 = ∂F

∂T α∂T β∂T γ
≡ cαβγ

which provide the structure constants of the commutative associative algebra

OαOβ = c
γ

αβOγ

with constraints cγαβ = ηγσ cσαβ, c1αβ = ηαβ . The associativity of cγαβ , i.e.

c
µ
αβc

σ
µγ = cµαγ c

σ
µβ

will give the WDVV equations (2.3).
Now, let us return to the Benney hierarchy. Since the Benney hierarchy is a two-variable

theory, only two primary fields {O1 = OP ≡ P,O2 = OQ ≡ Q} are involved in the TFT
formulation and we shall identify v1|T α,n�1=0 = T P and v2|T α,n�1=0 = T Q on the small phase
space. Therefore, the Lax operator in small phase space is written as L(z) = z + T P + T Qz−1

which can be viewed as a superpotential in the LG formulation of TFT [4, 24]. According to
the LG theory, the primary fields are defined by

OP (z) = ∂L(z)

∂T P
= 1 OQ(z) = ∂L(z)

∂T Q
= z−1

which can be used to compute the three-point correlation functions through the formula [4, 24]:

cαβγ = resL′=0

[Oα(z)Oβ(z)Oγ (z)

∂zL(z)

]
. (3.1)

It is easy to show that (3.1) reproduces the previous cαβγ and F on the small phase space. In
particular, the flat metric on the space of primary fields is given by

ηPQ = ηQP = 1 ηPP = ηQQ = 0

as we obtained previously. Now we can impose the fundamental correlation functions as
〈PP 〉 = ∂2F/∂(T P )2 = T Q, 〈PQ〉 = ∂2F/∂T P ∂T Q = T P and 〈QQ〉 = log T Q. Although
these two-point correlation functions are defined on the small phase space, however, it has
been shown [25] that they can be defined on the full phase space through the variables v1 and
v2 in which the gravitational couplings T α,n do not vanish. Hence it is easy to write down these
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genus-zero two-point functions on the full phase space and obtain the following constitutive
relations:

〈PP 〉 = ∂2F0

∂(T P )2
= v2

〈PQ〉 = ∂2F0

∂T P ∂T Q
= v1

〈QQ〉 = log〈PP 〉

(3.2)

which will be important to provide the connection between the Benney hierarchy and its
associated TFT.

Remark 3. In general, for the two-primary models, 〈QQ〉 = f (〈PP 〉) where the function
f (x) is model dependent [25]. In [32], the same relation f (x) = log x has been imposed to
extract the nonlinear Schrödinger hierarchy from the Hermitian one-matrix model at finite N .
However, for the CP 1 model [2, 25], f (x) = ex .

Based on the constitutive relations (3.2), we can identify the gravitational flows for v1 and
v2 in the full phase space as the Lax flows by taking into account the genus-zero topological
recursion relation [2, 25]:

〈σn(Oα)AB〉 =
∑

β,γ=P,Q

n〈σn−1(Oα)Oβ〉ηβγ 〈OγAB〉 α = P,Q. (3.3)

For example, setting n = 1, Oα = P and A = P,B = Q then

∂v1

∂T P,1
= 〈σ1(P )PQ〉
= 〈PP 〉〈QPQ〉 + 〈PQ〉〈PPQ〉
= 〈PP 〉〈QQ〉′ + 〈PQ〉〈PQ〉′
= [

1
2 (v

1)2 + v2
]′

where we denote f ′ = ∂f/∂T P = ∂f/∂X. Similarly, taking A = P, B = P we have

∂v2

∂T P,1
= 〈σ1(P )PP 〉 = (v1v2)′.

On the other hand, taking n = 2 we obtain

∂v1

∂T P,2
= [

1
3 (v

1)3 + 2v1v2
]′

∂v2

∂T P,2
= [

(v1)2v2 + (v2)2
]′
.

(3.4)

Comparing the above equations with the Lax flows (1.5), we shall identify Tn = T P,n−1/n

(n = 1, 2, . . .).
Next, let us turn to the T Q,n flows. Choosing Oα = Q and using the topological recursion

relation (3.3), we obtain

∂v1

∂T Q,1
= (v1 log v2)′

∂v2

∂T Q,1
= [

1
2 (v

1)2 + v2(log v2 − 1)
]′

∂v1

∂T Q,2
= [

(v1)2 log v2 + 2v2(log v2 − 2)
]′

∂v2

∂T Q,2
= [

1
3 (v

1)3 + 2v1v2(log v2 − 1)
]′

(3.5)
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which are nothing but the Lax flows associated with the logarithmic operator B̄n for n = 1, 2
under the identification T̄n = T Q,n.

It turns out that equations (3.4) and (3.5) can be recasted in the Lax form in terms of
coupling times T α,n as

∂L

∂T P,n
= 1

n + 1

{
Ln+1

�1 , L
}

∂L

∂T Q,n
= 2{[Ln(logL − cn)]�1, L}

(3.6)

and the associated commuting Hamiltonian flows with respect to the bi-Hamiltonian structures
are thus given by

∂v

∂T P,n
= {HP,n+1, v}1 = {HP,n, v}2 HP,n = 1

n(n + 1)

∫
resLn+1

∂v

∂T Q,n
= {HQ,n+1, v}1 = {HQ,n, v}2 HQ,n = 2

n

∫
res[Ln(logL − cn)]

(3.7)

where n = 0, 1, 2, . . . .

Remark 4. We note that (2.8) corresponds to the primary free energy of the dKP system in
the W0,1-model [33] defined by the Lax operator L = p + v−1/(p− s) under the identification
s = T P , v−1 = T Q. They also show that another choice leads to the dToda system in the CP 1

topological sigma model [30, 31].

Furthermore, using the constitutive relations (3.2) and the Lax flows (3.6), we have

∂v1

∂T α,n
= ∂〈σn(Oα)Q〉

∂T P
= (R(1)

α,n)
′

∂v2

∂T α,n
= ∂〈σn(Oα)P 〉

∂T P
= (R(2)

α,n)
′

whereR(β)
α,n are the analogues of the Gel’fand–Dickey potentials [34] of the KP hierarchy, given

by

R
(1)
P,n = 〈σn(P )Q〉 = 1

n + 1
(Ln+1)0

R
(1)
Q,n = 〈σn(Q)Q〉 = 2[Ln(logL − cn)]0

R
(2)
P,n = 〈σn(P )P 〉 = 1

n + 1
resLn+1

R
(2)
Q,n = 〈σn(Q)P 〉 = 2 res[Ln(logL − cn)].

(3.8)

For example, the two-point correlators involving the first and the second descendants are

〈σ1(P )P 〉 = v1v2

〈σ1(P )Q〉 = 1
2 (v

1)2 + v2

〈σ1(Q)P 〉 = 1
2 (v

1)2 + v2(log v2 − 1)

〈σ1(Q)Q〉 = v1 log v2

〈σ2(P )P 〉 = (v1)2v2 + (v2)2

〈σ2(P )Q〉 = 1
3 (v

1)3 + 2v1v2

〈σ2(Q)P 〉 = 1
3 (v

1)3 + 2v1v2(log v2 − 1)

〈σ2(Q)Q〉 = (v1)2 log v2 + 2v2(log v2 − 2).
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Finally, we would like to note that the last two equations of (3.8) can be integrated to yield

〈σn(P )〉 = 1

n + 1
R

(2)
P,n+1 = 1

(n + 1)(n + 2)
resLn+2

〈σn(Q)〉 = 1

n + 1
R

(2)
Q,n+1 = 2

n + 1
res[Ln+1(logL − cn+1)]

which are just the LG representation for one-point functions of gravitational descendants at
genus zero.

4. The twistor data and string equation

In this section we would like to discuss the string equation of the 2D TFT associated with the
Benney hierarchy, which govern the dynamics of the variables vα (or fundamental correlators)
in the full phase space. The Lax formulation in section 2 for the Benney hierarchy is, in fact,
similar to the formulation of the dToda-type hierarchy [12, 23]. Based on this observation,
we can reproduce the Benney equations by imposing constraints on the Lax operators and the
associated Orlov operators of the dmKP hierarchy [15] through the twistor data (see below).
We shall remark, however, that the flow equations corresponding to h

(0)
2 are absent in the

standard formulation of the dToda-type hierarchy. So we have to properly extend the standard
Orlov operator to include the additional hierarchy equations (2.10). We will closely follow
that of [35] to show that the constraints imposing on the twistor data implies the string equation
of the Benney hierarchy.

Let us consider two Lax operators µ and µ̃ with the following Laurent expansions
(T 1 = X):

µ = p +
∞∑
n=0

vn(T , T̃ )p−n

µ̃−1 = ṽ0(T , T̃ )p
−1 +

∞∑
n=0

ṽn+1(T , T̃ )p
n

(4.1)

which satisfy the commuting Lax flows

∂µ

∂Tn
= {Bn,µ} ∂µ

∂T̃n
= {B̃n, µ}

∂µ̃

∂Tn
= {Bn, µ̃} ∂µ̃

∂T̃n
= {B̃n, µ̃} (n = 1, 2, 3, . . .)

(4.2)

where the Poisson bracket { , } is defined as before and

Bn ≡ (µn)�1 B̃n ≡ (µ̃−n)�0.

Next, we consider the Orlov operators corresponding to dmKP

M =
∞∑
n=1

nTnµ
n−1 +

∞∑
n=1

wn(T , T̃ )µ
−n

M̃ = −
∞∑
n=1

nT̃nµ̃
−n−1 + X +

∞∑
n=1

w̃n(T , T̃ )µ̃
n

with the constraint

{µ,M} = 1 {µ̃, M̃} = 1. (4.3)
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In fact, the coefficient functions wn and w̃n in the Orlov operators are defined by the above
canonical relations and the following flow equations:

∂M

∂Tn
= {Bn,M} ∂M

∂T̃n
= {B̃n,M}

∂M̃

∂Tn
= {Bn, M̃} ∂M̃

∂T̃n
= {B̃n, M̃} (n = 1, 2, 3, . . .).

(4.4)

Inspired by the twistor construction (or the Riemann–Hilbert problem) for the solution structure
of the dToda hierarchy [12, 23], we now give the twistor construction for the Benney hierarchy.

Theorem 1. Let f (p,X), g(p,X), f̃ (p,X), g̃(p,X) be functions satisfying

{f (p,X), g(p,X)} = 1 {f̃ (p,X), g̃(p,X)} = 1. (4.5)

Then the functional equations

f (µ,M) = f̃ (µ̃, M̃) g(µ,M) = g̃(µ̃, M̃) (4.6)

can obtain a solution of (4.2) and (4.4). We call the pairs (f, g) and (f̃ , g̃) the twistor data of
the solution.

The proof is provided in appendix A.
To reduce the above theorem to the Benney hierarchy, we have to impose the following

constraint on the Lax operators:

L = µ = µ̃−1 (4.7)

that is, f (p,X) = p and f̃ (p,X) = p−1. As a result, the time variables T̃n can be eliminated
via the following identification:

T̃n = −Tn.

From (4.5), the twistor data g(p,X) and g̃(p,X) can be assumed to be in the following form:

g(p,X) = X −
∞∑
n=2

nTnp
n−1 g̃(p,X) = −Xp2 (4.8)

where the second part of g(p,X) is responsible for the string equations (see below). By
theorem 1 and equation (4.8), we obtain the following constraint for the Orlov operators:

M −
∞∑
n=2

nTnµ
n−1 = −µ̃2M̃. (4.9)

It is the above constraint that leads to the string equations.
So far, the twistor construction only involves the Lax flows (1.4). To obtain the string

equations associated with the TFT described in section 2, we have to modify the Orlov operator
M to include the additional flows (2.10). Namely, it is necessary to introduce the flows
generated by the logarithmic operator

B̄n = [Ln(logL − cn)]�1

where we have imposed the constraint (4.7) and used the prescription of the series expansion
(2.9) for logL. Let T̄n be the time variables of additional flows generated by B̄n then the Orlov
operator M is deformed by these new flows to M ′ so that

∂M ′

∂T̄n
= 2{B̄n,M

′}. (4.10)
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To construct the modified Orlov operator M ′, it is convenient to using the dressing method
[12]. Let us first express the original Lax operator µ and its conjugate Orlov operator M in
dressing form (similarity transformation)

µ = ead7(p) M = ead7

( ∞∑
n=1

nTnp
n−1

)
(4.11)

where

ead f (g) = g + {f, g} +
1

2!
{f, {f, g}} + · · · .

One can understand that this is the canonical transformation generated by 7(T , T̄ , p) (for the
T̄ dependence, see below) and its flow equations (Sato equations) can be written as [12]

∇Tn,77 = Bn − ead7(pn) (4.12)

where

∇Tn,77 ≡
∞∑
k=0

1

(k + 1)!
(ad7)k

(
∂7

∂Tn

)
.

It is easy to show that (4.12) together with (4.11) implies the flow equations (4.4).
In contrast with equation (4.12), the T̄n flows for 7 are given by

∇T̄n,7
7 = 2B̄n − ead7[pn(logp − cn)]

and a similar argument reaches the modified Orlov operator

M ′ = ead7

( ∞∑
n=1

nTnp
n−1 + 2

∞∑
n=1

nT̄np
n−1(logp − cn−1)

)

=
∞∑
n=1

nTnµ
n−1 +

∞∑
n=1

wnµ
−n + 2

∞∑
n=1

nT̄nµ
n−1(logµ − cn−1) (4.13)

which satisfies the additional flow equations (4.10).
Now we are in the position to derive the string equation. Following [35] we decompose

M ′ into the positive power part (M ′)�1 and the non-positive power part (M ′)�0 by using
equations (4.9) and (4.13). It turns out that(

M ′ −
∞∑
n=2

nTnµ
n−1

)
�1

= 2

[ ∞∑
n=1

nT̄nµ
n−1(logµ − cn−1)

]
�1

= 2
∞∑
n=1

nT̄nB̄n−1

(
M ′ −

∞∑
n=2

nTnµ
n−1

)
�0

= −
(
µ̃2M̃

)
�0

=
[ ∞∑
n=1

nT̃nµ̃
−n+1 − Xµ̃2 −

∞∑
n=1

w̃nµ̃
n+2

]
�0

= −
( ∞∑

n=1

nTnµ
n−1

)
�0
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where, by the definition (4.1), we have used the fact that (µ−n)�1 = (µ̃n)�0 = 0 for n � 1.
Hence

g(µ,M ′) = 2
∞∑
n=1

nT̄nB̄n−1 −
( ∞∑

n=1

nTnµ
n−1

)
�0

which together with the canonical commutation relation {g(L,M ′), L} = −1 implies

∞∑
n=2

nTn
∂L

∂Tn−1
+

∞∑
n=1

nT̄n
∂L

∂T̄n−1
= −1.

After shifting T1 → T1 − 1 and making the identification Tn = T P,n−1/n and T̄n = T Q,n as
described before, we have

∂L

∂T P
= 1 +

∞∑
n=1

nT P,n ∂L

∂T P,n−1
+

∞∑
n=1

nT Q,n ∂L

∂T Q,n−1
.

Now taking the zeroth-order term of the above equation and using the constitutive relation
(3.2) yields

∂〈PQ〉
∂T P

= 1 +
∞∑
n=1

∑
α=P,Q

nT α,n〈σn−1(Oα)PQ〉.

By integrating the above equation we obtain the universal string equation at genus zero [25]

v1(T ) = T P +
∞∑
n=1

∑
α=P,Q

nT α,n〈σn−1(Oα)Q〉

v2(T ) = T Q +
∞∑
n=1

∑
α=P,Q

nT α,n〈σn−1(Oα)P 〉

which describe the dynamics of vα associated with the gravitational background.

5. Genus-one correction of Poisson brackets

In this section, we will compute the genus-one correction to the bi-Hamiltonian structure of
the Benney hierarchy by using the DZ approach to the integrable hierarchy associated with
TFT [9], which consists of the following two main ingredients:

• introducing slow spatial and time variables scaling

T α,n → εT α,n n = 0, 1, 2, . . . (5.1)

• changing the full free energy as

F →
∞∑
g=0

ε2g−2Fg

where ε is the parameter of genus expansion. Thus all of the corrections become series in ε.
To obtain an unambiguous genus-one correction of the Hamiltonian flows (3.7) one may

expand the flat coordinates up to the ε2 order as

tα = t (0)α + ε2t (1)α + O(ε4) tα = ηαβt
β
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where t (0)α are the ordinary Benney variables vα satisfying (3.7) and t (1)α is the genus-one
correction defined by

t (1)α = ∂2F1(T )

∂T α∂X
.

Then there exists a unique hierarchy flows of the form [9]

∂tα

∂T β,n
= {tα(X),Hβ,n+1}1 + O(ε4)

= {tα(X),Hβ,n}2 + O(ε4) (5.2)

with

{tα(X), tβ(Y )}i = {tα(X), tβ(Y )}(0)i + ε2{tα(X), tβ(Y )}(1)i + O(ε4) i = 1, 2

Hα,n = H(0)
α,n + ε2H(1)

α,n + O(ε4).

This means that under such a correction the Poisson brackets J1 and J2 and the Hamiltonians
will receive corrections up to ε2 such that the Hamiltonian flows (5.2) still commute with each
other.

In [9], the genus-one part of the free energy has the form

F1(T ) = [
1

24 log det Mα
β (t, ∂Xt) + G(t)

]
t=v(T )

(5.3)

where the matrix Mα
β is given by

Mα
β (t, ∂Xt) = cαβγ (t)∂Xt

γ

and G(t) is a certain function satisfying Getzler’s equation [36]. The first part of formula (5.3)
is quite simple on the small phase space, whereas the second part describes, in the topological
sigma-models, the genus-one Gromov–Witten invariant of the target space and satisfies a
complicated recursion relation [36]. For the primary free energy (2.8), the G-function satisfies
the following simple ordinary differential equation [9]:

48(t2)2 ∂2G

∂(t2)2
+ 24t2 ∂G

∂t2
= 2

which can be easily solved as (up to a constant)

G(t) = − 1
12 log t2. (5.4)

The G-function of the Frobenius manifold also satisfies the quasi-homogeneity condition
LEG = − 1

6 . The above G-function can also be derived using the tau function of the
isomonodromy deformation problem arising in the theory of WDVV equations of associativity
[9]. We briefly describe the derivation in appendix B.

On the other hand, a simple computation yields

Mα
β =

(
t1
X t2

X

t2
X/t

2 t1
X

)

which together with (5.4) implies

F1 = 1
24 log

[
(t1
X)

2t2 − (t2
X)

2
]− 1

8 log t2.
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Using cαβγ and F1 and consulting the procedure developed by Dubrovin and Zhang (cf
theorems 1 and 2 and proposition 3 in [9]), after a straightforward but tedious computation,
we obtain the genus-one correction of the first Poisson bracket:

{t1(X), t1(Y )}1 = 0 + O(ε4)

{t1(X), t2(Y )}1 = δ′(X − Y ) +
ε2

6

[
t2
X

(t2)2
δ′′(X − Y ) − 1

t2
δ′′′(X − Y )

]
+ O(ε4)

{t2(X), t1(Y )}1 = δ′(X − Y ) +
ε2

6

[(
t2
XX

(t2)2
− 2(t2

X)
2

(t2)3

)
δ′(X − Y )

+
2t2

X

(t2)2
δ′′(X − Y ) − 1

t2
δ′′′(X − Y )

]
+ O(ε4)

{t2(X), t2(Y )}1 = 0 + O(ε4).

(5.5)

On the other hand, for the second bracket, we obtain

{t1(X), t1(Y )}2 = 2δ′(X − Y ) +
ε2

12

[(
t2
XX

(t2)2
− 2(t2

X)
2

(t2)3

)
δ′(X − Y )

+
3t2

X

(t2)2
δ′′(X − Y ) − 2

t2
δ′′′(X − Y )

]
+ O(ε4)

{t1(X), t2(Y )}2 = t1
Xδ(X − Y ) + t1δ′(X − Y )

+
ε2

6

[(
t1t2

X

(t2)2
− t1

X

t2

)
δ′′(X − Y ) − t1

t2
δ′′′(X − Y )

]
+ O(ε4)

{t2(X), t1(Y )}2 = t1δ′(X − Y ) +
ε2

6

[(
t1t2

XX

(t2)2
+

2t1
Xt

2
X

(t2)2
− 2t1(t2

X)
2

(t2)3
− t1

XX

t2

)
δ′(X − Y )

+

(
2t1t2

X

(t2)2
− 2t1

X

t2

)
δ′′(X − Y ) − t1

t2
δ′′′(X − Y )

]
+ O(ε4)

{t2(X), t2(Y )}2 = t2
Xδ(X − Y ) + 2t2δ′(X − Y ) + O(ε4).

(5.6)

Also, we can derive the genus-one corrections of the Hamiltonians, H(1)
α,n and some of them

are:

H
(1)
P,1 = −

∫ (
t1
Xt

2
X

6t2

)
dX

H
(1)
P,2 = −

∫ [
(t1
X)

2

6
+
t1t1

Xt
2
X

6t2
+
(t2
X)

2

8t2

]
dX

H
(1)
Q,1 = −

∫ [
(t1
X)

2

12t2
+

(t2
X)

2

24(t2)2

]
dX

H
(1)
Q,2 = −

∫ [
t1(t1

X)
2

12t2
+

(
1

6t2
+

log t2

6t2

)
t1
Xt

2
X +

t1(t2
X)

2

24(t2)2

]
dX.
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Therefore, the corresponding commuting flow equations up to genus-one corrections are given
by(
t1

t2

)
T P,0

=
(
t1

t2

)
X

+ O(ε4)

(
t1

t2

)
T P,1

=
(
(t1)2/2 + t2

t1t2

)
X

+
ε2

24




2t2
XX

t2
− 3(t2

X)
2

(t2)2

4t1
XX − 4t1

Xt
2
X

t2




X

+ O(ε4)

(
t1

t2

)
T Q,0

=
(

log t2

t1

)
X

+
ε2

24


 −2t2

XX

(t2)2
+

2(t1
X)

2

(t2)2
+

2(t2
X)

2

(t2)3

0




X

+ O(ε4)

(
t1

t2

)
T Q,1

=
(

t1 log t2

1
2 (t

1)2 + t2(log t2 − 1)

)
X

+
ε2

24




4t1
XX

t2
− 2t1t2

XX

(t2)2
+

2t1(t1
X)

2

(t2)2
+

2t1(t2
X)

2

(t2)3
− 6t1

Xt
2
X

(t2)2

4t2
XX

t2
− 2(t1

X)
2

t2
− 5(t2

X)
2

(t2)2




X

+ O(ε4).

Finally, we would like to show that the genus-one correction of the Poisson brackets (5.5)
and (5.6) can be rederived from the ‘quantum’ brackets associated with a dispersive counterpart
of the Benney hierarchy. This means that the loop correction can be viewed as the dispersive
effect of the hydrodynamic-type Poisson structure. Let us consider the ‘quantum’ Lax operator
of the form

K = ε∂ + u1 + (ε∂)−1u2 ∂ ≡ ∂/∂X

which is just the Lax operator of the KB hierarchy discussed in [26, 27] under the scaling (5.1).
The bi-Hamiltonian structure associated with K has been obtained by Oevel and Strampp [27]
as follows:

{I, J }i =
∫

res

[
δI

δK
=i

(
δJ

δK

)]
i = 1, 2

where I and J are functionals of K and the Hamiltonian maps =i are defined by

=1 :
δI

δK
→
[(

δI

δK

)
�1

,K

]
−
([

δI

δK
,K

])
�−1

=2 :
δI

δK
→
(
K

δI

δK

)
+

K − K

(
δI

δK
K

)
+

−
[(

K
δI

δK

)
0

,K

]
−
([

δI

δK
,K

])
−1

K

+

[∫ X

res

[
δI

δK
,K

]
,K

]

with

δI

δK
= δI

δu2
+ (ε∂)−1 δI

δu1
.
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Using the Hamiltonian flows ∂K/∂t = 7i(δH/δK), we can easily read off the ‘quantum’
Poisson brackets

{u1(X), u1(Y )}1 = 0

{u1(X), u2(Y )}1 = δ′(X − Y )

{u2(X), u1(Y )}1 = δ′(X − Y )

{u2(X), u2(Y )}1 = 0

for the first structure and

{u1(X), u1(Y )}2 = 2δ′(X − Y )

{u1(X), u2(Y )}2 = u1
Xδ(X − Y ) + u1δ′(X − Y ) + εδ′′(X − Y )

{u2(X), u1(Y )}2 = u1δ′(X − Y ) − εδ′′(X − Y )

{u2(X), u2(Y )}2 = u2
Xδ(X − Y ) + 2u2δ′(X − Y )

for the second. As a result, the first structure gets no correction, whereas the second structure
receives a first-order correction. So far, everything is exact. However, if we define the following
substitution for the flat coordinates tα:

t1(T ) = u1 − ε(ln u2)X − ε2

24

(
u1
X

u2

)
X

+
ε3

72

[
(ln u2)XXu

2 − (u1
X)

2

(u2)2

]
X

+ O(ε4)

t2(T ) = u2 − ε

2
u1
X +

3ε2

8
(ln u2)XX +

11ε3

144

(
u1
X

u2

)
XX

+ O(ε4)

(5.7)

where the right-hand side of tα is constructed from ∂ivα/∂(T Q)i |vα=uα , then a straightforward
but lengthy calculation shows that the first and the second Poisson brackets for tα coincide with
equations (5.5) and (5.6) modulo O(ε4). Furthermore, using (5.7), it is not hard to check that
the dispersion expansion of the Hamiltonians and hierarchy flows defined by the KB hierarchy
and those defined by HP,n and T P,n-flow coincide, modulo O(ε4). In this sense, the parameter
ε of genus expansion characterizes the effect of dispersion.

Remark 5. The free energy and G-function associated with the bi-Hamiltonian structure of
Drinfeld–Sokolov reduction of Lie algebra B2 are [9]

F = 1
2 (t

1)2t2 + 1
15 (t

2)5 G = − 1
48 log t2

where the G-function of B2 is also of logarithmic type. However, in contrast with the Benney
hierarchy, the second Poisson brackets of the dispersion expansion coincide with those of DZ
brackets only up to ε0 [9]. This inconsistency was also pointed out in [37] by considering the
commuting flows.

6. Conclusions

We have studied several interesting properties associated with the bi-Hamiltonian structure of
the Benney hierarchy. Starting with the Poisson brackets of hydrodynamic type we obtain
the structure coefficients of an associative algebra characterizing the associated Frobenius
manifold. This implies that there exists a function which generates the structure coefficients
and this function, in fact, can be viewed as the genus-zero primary free energy of a TFT. It turns
out that the topological correlation functions at genus zero can be constructed by using the LG
formulation. After appropriately defining the two-point correlation functions as the Benney
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variables, the genus-zero topological recursion relation of the TFT turns out to be the Benney
equations. Furthermore, we use the twistor construction to derive the string equation associated
with the TFT, which describe the dynamics of correlation functions in the full phase space.
Finally, based on the approach of Dubrovin and Zhang we obtain the genus-one correction
of the Poisson brackets. We show that the same result can be reached by analysing the OS
brackets of the KB hierarchy in the semiclassical limit.

In spite of the results obtained, there are some interesting issues deserving more
investigations.

• One knows that there exists a Legendre-type transformation between the free energy (2.8)
and that of topological CP 1 model [31]. In fact, one can check that the DZ brackets of the
Benney hierarchy and those of dToda system in the CP 1 model [9, 37] coincide only up to
ε0 via the Legendre-type transformation. A natural question is: can we find a ‘quantized’
version of the Legendre transformation between these two dispersionless hierarchies so
that their DZ brackets match up to g � 1?

• In the deviation of the string equation we borrow the method of twistor construction to
obtain the result. In [10], using a recursion procedure, Dubrovin and Zhang establish the
Virasoro constraints of genus zero for an arbitrary Frobenius manifold. Then it would be
interesting to know whether the solution of the string equation of the Benney hierarchy
satisfies Virasoro constraints using the methods developed in [5, 23]. Also, we wonder
whether there exists a matrix model associated with the Benney hierarchy such that the
large-N limit of that reproduces the genus expansion of the hierarchy flows.

• Recently, the genus-two free energy F2 of the Benney hierarchy has been obtained in
[38] (see also [39]) by combining genus-two topological recursion relations and Virasoro
constraints [40]. So we should extend the expansions (5.5) and (5.6) to O(ε6) when the
genus-two correction is included. It is quite interesting to see whether the expansions
(5.7) can be extended so that the OS brackets are matched with the DZ brackets up to
O(ε6) after appropriate differential substitutions.

We hope to report on these issues in a forthcoming paper.
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Appendix A. Proof of theorem 1

Let us first derive the canonical Poisson relations (4.3). By the chain rule, we have


∂f (µ,M)

∂µ

∂f (µ,M)

∂M

∂g(µ,M)

∂µ

∂g(µ,M)

∂M






∂µ

∂p

∂µ

∂X

∂M

∂p

∂M

∂X




=




∂f̃ (µ̃, M̃)

∂µ̃

∂f̃ (µ̃, M̃)

∂M̃

∂g̃(µ̃, M̃)

∂µ̃

∂g̃(µ̃, M̃)

∂M̃






∂µ̃

∂p

∂µ̃

∂X

∂M̃

∂p

∂M̃

∂X


. (A.1)
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Taking the determinant of both hand sides of this equation and using relations (4.5), we obtain

{µ,M} = {µ̃, M̃}. (A.2)

One can calculate the left-hand side as

{µ,M} = ∂µ

∂p

∂M

∂X
− ∂M

∂p

∂µ

∂X

= ∂µ

∂p

[(
∂M

∂µ

)
wn(T ,T̃ ) fixed

∂µ

∂X
+ 1 +

∞∑
i=1

∂wi(T , T̃ )

∂X
µ−i

]

− ∂µ

∂X

(
∂M

∂µ

)
wn(T ,T̃ ) fixed

∂µ

∂p

= 1 + (negative powers of p)

where we have used the fact that the terms containing
(
∂M
∂µ

)
wn(T ,T̃ ) fixed

in the last line cancel.

Similar calculations can show that the right-hand side contains only the non-negative powers
of p. Therefore, the both hands of (A.2) are equal to 1, which proves the canonical relations
(4.3).

The Lax equations with respect to Tn are proved as follows. Differentiating equations (4.6)
by Tn gives


∂f (µ,M)

∂µ

∂f (µ,M)

∂M

∂g(µ,M)

∂µ

∂g(µ,M)

∂M






∂µ

∂Tn
∂M

∂Tn


 =




∂f̃ (µ̃, M̃)

∂µ̃

∂f̃ (µ̃, M̃)

∂M̃

∂g̃(µ̃, M̃)

∂µ̃

∂g̃(µ̃, M̃)

∂M̃






∂µ̃

∂Tn

∂M̃

∂Tn


. (A.3)

Using (A.1), we can rewrite (A.3) as




∂µ

∂p

∂µ

∂X

∂M

∂p

∂M

∂X




−1


∂µ

∂Tn
∂M

∂Tn


 =




∂µ̃

∂p

∂µ̃

∂X

∂M̃

∂p

∂M̃

∂X




−1


∂µ̃

∂Tn

∂M̃

∂Tn


. (A.4)

Since the determinants of the 2×2 matrices on both sides are 1, the inverse can also be written
explicitly. In components, thus, the above matrix (A.4) relation gives

∂M

∂X

∂µ

∂Tn
− ∂µ

∂X

∂M

∂Tn
= ∂M̃

∂X

∂µ̃

∂Tn
− ∂µ̃

∂X

∂M̃

∂Tn
(A.5)

∂M

∂p

∂µ

∂Tn
− ∂µ

∂p

∂M

∂Tn
= ∂M̃

∂p

∂µ̃

∂Tn
− ∂µ̃

∂p

∂M̃

∂Tn
. (A.6)

The left-hand sides of equations (A.5) and (A.6) can be calculated just as we have done above
for derivatives in (p,X). For the equation of (A.5),

∂M

∂X

∂µ

∂Tn
− ∂µ

∂X

∂M

∂Tn
=
[(

∂M

∂µ

)
wi(T ,T̃ ) fixed

∂µ

∂X
+ 1 +

∞∑
i=1

∂wi(T , T̃ )

∂X
µ−i

]
∂µ

∂Tn

− ∂µ

∂X

[(
∂M

∂µ

)
wi(T ,T̃ ) fixed

∂µ

∂Tn
+ nµn−1 +

∞∑
i=1

∂wi(T , T̃ )

∂Tn
µ−i

]
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and terms containing
(
∂M
∂µ

)
wi(T ,T̃ ) fixed

cancel. Thus,

∂M

∂X

∂µ

∂Tn
− ∂µ

∂X

∂M

∂Tn
= −∂(µn)�1

∂X
+ (powers of p � 0).

Similar calculations show that the right-hand side of (A.5) contains only positive powers of p.
Therefore, only powers of p � 1 should survive. Hence

∂M

∂X

∂µ

∂Tn
− ∂µ

∂X

∂M

∂Tn
= −∂(µn)�1

∂X
= −∂Bn

∂X
. (A.7)

For equation (A.6), we have similarly
∂M

∂p

∂µ

∂Tn
− ∂µ

∂p

∂M

∂Tn
= −∂(µn)�0

∂p
+ (negative powers of p)

= −∂(µn)�1

∂p
+ (negative powers of p).

Similarly, noticing the partial derivative ∂
∂p

, we can also show that the right-hand of (A.6) has
a Laurent expansion with only non-negative powers of p. Hence only non-negative powers of
p should survive. Thus

∂M

∂p

∂µ

∂Tn
− ∂µ

∂p

∂M

∂Tn
= −∂(µn)�1

∂p
= −∂Bn

∂p
. (A.8)

Using

{µ,M} = {µ̃, M̃} = 1

equations (A.7) and (A.8) can be readily solved:
∂µ

∂Tn
= −∂µ

∂p

∂Bn

∂X
+
∂µ

∂X

∂Bn

∂p
= {Bn,µ}

∂M

∂Tn
= −∂M

∂p

∂Bn

∂X
+
∂M

∂X

∂Bn

∂p
= {Bn,M}

which is nothing but the Tn-flow part of the Lax equations (4.2) and (4.4). The T̃n-flow part of
the Lax equations can be proved in a similar way. This completes the proof of the theorem.

Appendix B. A deviation of the G-function

For the quasi-homogeneous primary free energy (2.8), one can introduce the canonical
coordinates s1, s2 determined by

det(gij (t) − sηij (t)) = 0

which gives

s1 = t1 − 2
√
t2 s2 = t1 + 2

√
t2.

Then the topological metric ηij and its inverse ηij in the canonical coordinates are given by

ηij (s) = ∂si

∂tk

∂sj

∂t l
ηkl(t) =


 − 8

s2 − s1
0

0
8

s2 − s1




ηij (s) =


 − s2 − s1

8
0

0
s2 − s1

8


.

(B.1)
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It has been shown [9] that the G-function can be expressed by the following formula:

G(t1, t2) = log
τI

J 1/24

where J is the Jacobian of the transformation from the canonical coordinates to the flat ones,
which is easily obtained as

J = det

(
∂t i

∂sj

)
= 1

2

√
t2

and τI is the tau-function of a solution in the theory of isomonodromy deformation defined by
the quadrature [41]

d log τI =
2∑

i=1

Hi dsi (B.2)

where the quadratic Hamiltonian Hi has the form

Hi = 1

2

∑
j �=i

V 2
ij

si − sj

with

Vij = −(si − sj )γij (s) γij (s) = ∂j
√
ηii(s)√

ηjj (s)
.

Note that ∂i ≡ ∂
∂si

and Vij = −Vji .
From (B.1) we have

γij (s) =




1

2(s1 − s2)

−i

2(s2 − s1)

−i

2(s2 − s1)

1

2(s2 − s1)


 Vij =

(
0 − 1

2 i
1
2 i 0

)

which together with (B.2) implies

τI = (s2 − s1)−1/8

and hence, up to an additive constant

G(t1, t2) = log
(s2 − s1)−1/8

[(s2 − s1)/8]1/24
= − 1

12
log t2.
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